Tag Archives: medidas

Voltimetro Vectorial

Un Voltimetro Vectorial es empleado generalmente con señales de alta frecuencia, la característica distintiva del mismo es que ademas de indicar la magnitud de una señal nos da información sobre su fase.

Como vimos en la medición de Parámetros S para poder calcular cada uno de los cuatro parámetros necesitábamos medir las magnitudes y diferencia de fase entre dos señales, en ese caso necesitábamos realizar la medición con el voltimetro vectorial.

La señal de referencia para la medición de fase es la que ingresa por el canal A. Un circuito de control automático de fase (APC) sintoniza y engancha en fase al instrumento a la señal del canal A. El rango de frecuencia del APC es seccionado por medio de un control en el panel frontal. El APC sintoniza entonces el instrumento automáticamente y mantiene la sintonia aún cuando la frecuencia de entrada fluctúa moderamente.

Diagrama de un Voltimetro Vectorial

Diagrama en bloques elemental de un Voltimetro Vectorial que utiliza un circuito de enganche de fase automático (APC) para sintonia y enganche de fase del instrumento al canal A. El APC ajusta la frecuencia del oscilador  local controlado por tensión (VCO) que gatilla los muestreadores mezcladores de las sondas. Las señales de RF son reconstruidas a partir de las muestras de FI de 20kHz, donde se mide la amplitud y la fase.

Continuar leyendo

Medicion de Parametros S

Ya sabemos que son los Parámetros S, ahora la cuestión pasa en como medirlos. Un diagrama en bloques típico instrumentado (Analizador de Redes) para medir los parámetros S se indica en la siguiente figura.

Montaje para la medicion de parametros S

Fig 1. Diagrama en bloques de un típico sistema de medición de los parametros S, montaje en direccion directa

El procedimiento básico para medir S11 y S22 es el de medir con un voltimetro vectorial la relación de amplitudes y fase entre las tensiones incidentes y reflejadas con la sonda B en la posición B1; S11 es medida con el montaje (JIG) en la dirección directa y S22 con el montaje invertido. S12 y S21, las señales de transferencia, se miden con la sonda B en la posición B2 obteniendo S21 con el montaje invertido.

Continuar leyendo

Parametros Scattering “S”

Introducción a los Parámetros S

Analizador de Redes usado para medir parametros S

Un importante avance en el diseño y análisis de los circuitos con transistores es el de representar el dispositivo con un circuito equivalente apropiado. Para el análisis de señales pequeñas de CA es una practica común el de considerar al transistor como una “caja negra” de 4 terminales con las tensiones y corrientes en los terminales de entrada y salida relacionados por un conjunto de 4 parámetros. EL conjunto más útil de tales parámetros hasta la década del 60 han sido los parámetros “h”, “y” y “z” que son los que normalmente encontramos en cualquier libro.

Hay 4 parámetros para cada una de las 3 posibles configuraciones (emisor, base o colector común) ídem para los transistores de efecto de campo, lo que hacen un total de 36 parámetros. Algunos de estos parámetros para un tipo de transistor dado son normalmente especificados por el fabricante, dependiendo de las intenciones de las aplicaciones.

Continuar leyendo

Capacitores SMD

Esta introducción sobre la Tecnología y Dispositivos de Montaje Superficial se encuentra dividido en las siguientes paginas:

capacitores encapsulado SMD

Los capacitores SMD son usados en cantidades tan grandes como los resistores, es el componente más empleado después de estos. Existen diferentes tipos de capacitores, de cerámicos, de tantalio, los electrolíticos, etc .

Capacitores Cerámicos SMD

La mayoría de los capacitores que son usados y fabricados en SMD son los cerámicos. Normalmente pueden encontrarse encapsulados similares a los resistores.

  • 1812 – 4.6 mm x 3.0 mm (0.18″ x 0.12″)
  • 1206 – 3.0 mm x 1.5 mm (0.12″ x 0.06″)
  • 0805 – 2.0 mm x 1.3 mm (0.08″ x 0.05″)
  • 0603 – 1.5 mm x 0.8 mm (0.06″ x 0.03″)
  • 0402 – 1.0 mm x 0.5 mm (0.04″ x 0.02″)
  • 0201 – 0.6 mm x 0.3 mm (0.02″ x 0.01″)

capacitores ceramicos SMD

Estructura:  Los capacitores SMD consisten  en un bloque rectangular de cerámica dieléctrica en el cual se intercalan una serie de electrodos de metales preciosos. Esta estructura permite obtener altos valores de capacitancia por unidad de volumen, los electrodos internos se encuentran conectados a los terminales laterales.

Manufactura: El material crudo dieléctrico es finamente molido y cuidadosamente mezclado. Luego es calentado a temperatura entre los 1100 y 1300 °C para alcanzar la composición química requerida. La masa resultante se vuelve a moler y se agregan materiales adicionales para alcanzar las propiedades eléctricas necesarias.

La siguiente etapa del proceso consiste en mezclar el material finamente molido con un aditivo solvente y vinculante, esto permite obtener hojas finas mediante laminado.

Capacitores de Tantalio SMD

capacitores tantalio SMD

Los capacitores de tantalio son ampliamente usados para proveer valores de capacitancia mayores a aquellos que pueden obtener en los capacitores cerámicos. Como resultado de diferentes formas de construcción y requerimientos los encapsulados son distintos. Los siguientes vienen especificados en las normas de la EIA

  • Tamaño A 3.2 mm x 1.6 mm x 1.6 mm (EIA 3216-18)
  • Tamaño B 3.5 mm x 2.8 mm x 1.9 mm (EIA 3528-21)
  • Tamaño C 6.0 mm x 3.2 mm x 2.2 mm (EIA 6032-28)
  • Tamaño D 7.3 mm x 4.3 mm x 2.4 mm (EIA 7343-31)
  • Tamaño E 7.3 mm x 4.3 mm x 4.1 mm (EIA 7343-43)

Capacitores Electroliticos SMD

Los capacitores electrolíticos son  cada vez más usados en los diseños SMD. Sus muy altos valores de capacitancia combinado con su bajo costo los hace particularmente útiles en diferentes áreas.

capacitores electroliticos SMD

A menudo tienen en su parte superior marcado el valor de capacidad y tensión de trabajo.

Se usan dos métodos básicos, uno consiste en incluir su valor de capacidad en microfaradios (uF), y el otro emplea un código. Si estamos en presencia del primer método un código de 33 6V indicaría un capacitor de 33 uF con una tensión de trabajo de 6 voltios.

El sistema de codificación alternativo emplea letras seguidos de tres dígitos, la letra indica el nivel de tensión según se encuentra definido en la siguiente tabla, los dígitos expresan el valor de capacidad en picofaradios, al igual que en el resto de los sistemas de codificación con dígitos, los dos primeros números dan las cifras significativas  y el tercero es el multiplicador. Por Ej: G106 nos indica que el capacitor trabaja a 4 voltios y su capacidad es de 10uF (10 x 10^6 picofaradios)

codigo tension voltage capacitores electroliticos SMD